Multiresolution Fuzzy C-Means Clustering Using Markov Random Field for Image Segmentation
نویسندگان
چکیده
In this paper, an unsupervised multiresolution image segmentation algorithm is put forward, which combines interscale and intrascale Markov random field and fuzzy c-means clustering with spatial constraints. In the initial label determination of wavelet coefficient phase, the statistical distribution property of wavelet coefficients is characterized by Gaussian mixture model, the properties of intrascale clustering and interscale persistence of wavelet coefficients are captured by Markov prior probability model. According to maximum a posterior rule, the initial label of wavelet coefficient from coarse to fine scale is determined. In the image segmentation phase, in order to overcome the shortcomings of conventional fuzzy c-means clustering, such as being sensitive to noise and lacking of spatial constraints, we construct the novel fuzzy c-means objective function based on the property of intrascale clustering and interscale persistence of wavelet coefficients, taking advantage of Lagrange multipliers, the improved objective function with spatial constraints is optimized, the final label of wavelet coefficient is determined by iteratively updating the membership degree and cluster centers. The experimental results on real magnetic resonance image and peppers image with noise show that the proposed algorithm obtains much better segmentation results, such as accurately differentiating different regions and being immune to noise.
منابع مشابه
Cluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملUnsupervised MRI segmentation with spatial connectivity
Magnetic Resonance Imaging (MRI) offers a wealth of information for medical examination. Fast, accurate and reproducible segmentation of MRI is desirable in many applications. We have developed a new unsupervised MRI segmentation method based on k-means and fuzzy c-means (FCM) algorithms, which uses spatial constraints. Spatial constraints are included by the use of a Markov Random Field model....
متن کاملSpatial Fuzzy Clustering using EM and Markov Random Fields
Methods are investigated in order to partition in k groups a set of n multivariate observation vectors located at neighboring geographic sites; applications include image segmentation, ecological or soil data cartography. In this perspective, the deterministic variant of the EM procedure described in Zhang (1992) for hidden Markov random fields is shown to be equivalent to the optimization of a...
متن کامل